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1. INTRODUCTION: 

Fitting a sum of exponential model to equispaced data, popularly called as linear 
compartment model, to analyze a real data set is quite common to the scientists and 
engineers. See for example Anderson (1983), Seber and Wild (1989), Gallant (1987), 
Bates and Watts (1988) and the references there in. In this paper we consider the fitting 
of the following linear compartment model; 

y(t) = Y.ake^ + e{t) (1) 

Here y(t) is observed at the time points *!,...£„, which are assumed to be equidistant, a's 
and /3's are unknown parameters, p, is also assumed to be unknown. e(t)'s are error random 
variables, they are assumed to be independent and identically distributed (i.i.d.) with zero 
mean and finite variance a2. The problem is, given a sample of size n, y(*i),...y(*n), 
estimate p, ctu...ctp and also estimate ß\,... ßp. Note that without loss of generality we 
can assume ß1 < ß2 < ... < ßp- The ordering may be needed in the identification of the 
estimates. We also assume p < §. This assumption is realistic, infact in practice usually n 
is quite large compared to p. 

This is a very old problem and well known problem in statistical literature. The 
first reference of this work goes back to the pionerring work of Prony in 1795. After 
that several articles have been appeared mainly to establish some iterative procedures to 
obtain the least squares estimators (LSE), when 'p' is known. See for example Barham 
and Drane (1972), Golub and Pereyra (1973), Osborne (1975, 1976), Osborne and Smyth 
(1986, 1994), Kahn et al. (1992). It is well known that this problem is a numerically 
difficult problem. Recently it is observed by Osborne and Smyth (1994) that the method 
originally proposed by Osborne (1975) can be very effective, provided the initial value 
is reasonably good. Infact it is observed that all the methods are quite sensitive to the 
initial value. Unfortunately no where in the literature except the work of Prony (1795) 
the choice of the initial value has been suggested. Infact we will see that in many cases 
the Prony's estimators can not be used as an initial guess. We discuss a method which 
can be used to obtain the initial guess of any one of the standard algorithm. We also 
propose four different types of the confidence intervals and compare their performances 
through Monte Carlo simulations. We also consider the estimation of 'p'. We propose to 
use the information theoretic criteria and the Cross Validation technique in this purpose. 
We apply these methods to one real life data set and see how the proposed methods work 
in practice. 

The organisation of the paper is as follows: From Section 2 to Section 6, we assume 
that 'p' is known. In Section 2, we introduce the seperable regression technique in this 
case as it was originally proposed by Richards (1961). We introduce the Prony's estimator 
in Section 3 and the proposed initial value estimator is presented in Section 4. We discuss 



different confidence intervals in Section 5 and some experimental results are presented in 
Section 6. Estimation of 'p' is considered in Section 7 and the data analysis of one data 
set is being done in Section 8. Finally we draw conclusions of our work in Section 9. 

2. LEAST SQUARES ESTIMATORS: 

Observe that under the assumption of additive i.i.d. error the LSE can be obtained by 
minimizing the residual sums of squares; 

T2 

R(a,ß) = Yi y(*)-S«*e- 
p 

ßkt 

t=<i L /fc=l 

(2) 

with respect to a and ß, where a = (ax,...ap) and ß = (fc,...,ßT). Here R(a,ß) can be 
written in a matrix form as follows; 

R(a, ß) = ((Y - A(ß)a)T (Y - A(ß)a) (3) 

where Y = (y(*i),..., y(tn)) and A(ß) is a n x p matrix of the following form 

A(/3)=        i      : j        , (4) 

^ eßltn   ...   e^tn j 

Now observe that for a fixed 'p', the LSE of a's are 

&{ß) = [AT(ß)A(ß)}-1AT(ß)Y (5) 

Now if we replace a(ß) obtained from (5) in (3), we obtain; 

R(a, ß) = Q(ß) = YT(I - PA)Y (6) 

where PA = A(ß)[AT(ß)A(ß)]~1AT(ß) is the projection matrix on the space spanned 
by the columns of A(/?). Therefore the LSE of {a,ß) obtained by minimizing R(a,ß) 
with respect to a, ß is same as first obtaining the LSE, ß, of ß by minimizing Q(ß) with 
respect to ß and then obtain the LSE of a by putting ß in place of ß in (5). Osborne (1975) 
considered the minimization of Q{ß) with respect to ß and he transformed the minimization 
problem to an non-linear eigenvalue problem and proposed an iterative scheme to solve it. 
Recently it is observed by Osborne and Smyth (1994) that the iterative scheme originally 
proposed by Osborne(1975) is numerically stable, i.e., if the initial value of the iterative 
procedure is close to the true value (within the radius of convergence) then the iterative 
procedure converges almost surely. 

3. PRONY'S ESTIMATOR: 



Prony observed the following (see for example Barrodale and Olesky; 1981). If 

^ = 5>*e"*' for     t = tu...,tn (7) 
jt=i 

then there exists (p+1) constants, gx,...,gp+i, such that 

gift, + 92lki+1 + ■ • ■ + 9p+iVti+p = 0 for      * = l,...,n. (8) 

Here g = (ffi, • • •, <7p+i) is unique upto a constant multiplication and therefore without loss 
of generality we can assume | g| = YZ^i 9i = 1 ■ Moreover it can be shown that if h = t2—h, 
then eAfc,..., eß"h are the roots of the following polynomial equation: 

B(x) =gi+g2x + ... + 9^i^+l = 0 (9) 

Therefore there exists a one to one correspondence between g, such that |g| = 1 and 
0! > 0, with the nonlinear parameter ß. Interestingly g is independent of a (see Tufts and 
Kumaresan; 1982). Observe that (8) can be written in the following form; 

Mg = 0 (10) 

where M is the n -p x p+1 matrix of ^'s. The rank of the matrix M is p if n —p > p+1 and 
g is the eigenvector corresponding to the zero eigenvalue of MTM. This result can be used 
to obtain an initial estimator of ß's from the data. The idea is as follows. Assume that 
the error variance is small then form a matrix Y from M by replacing \it by yt (assuming 
E(Vt) = Vt) for *i,...,*„■ Then obtain g = (&,...,9P) as the eigenvector corresponding 
to the minimum eigenvalue of ^Y. Normalize g s.t. |g| = 1 and §i > 0. Construct the 
polynomial equation 

B(x)=g1+g2x + ... + gp+1x
p = 0 (11) 

and obtain the roots of the polynomial (11) of the form eÄ\..., e&\ Note that we can 
always assume ß\ < ß2 < ... < ßp, because it is simply renaming the estimators and then 
the ßi,..., ßp can be used as estimators of ßx,..., ßp. It usually behaves quite well as an 
initial guess provided the error variance is small. If the error variance is large then there 
are usually two kinds of problems. It may be possible that some roots of the polynomial 
equation (11) are complex or some roots may be negative. In both the cases it is not 
possible to obtain the estimators ßx,...,ßp. Osborne (1975) used these estimators as the 
initial value for his numerical experiments. In our numerical experiments we observed that 
Prony's estimator does not exist in some situations. 

4. MODIFIED PRONY ESTIMATOR: 

Prony's idea has been used extensively in the Signal Processing literature to estimate 
the frequencies of an undamped exponential model.  See for example the work of Ulrych 



and Clayton (1976), Kundu (1994, 1995), Kundu and Mitra (1995a, 1995b), Tufts and 
Kumaresan (1982). Several modifications have been suggested by the above authors for 
the complex valued signals. Unfortunately these methods can not be applied in the case 
of real data sets. In this section we propose a new estimator which is a modification of the 
existing Prony's estimator, and it can be used quite effectively as an initial estimator for 
different algorithms. 

First consider the same model as (1) and yt and fa are defined same as in Section 3. 
Now choose L, such that, p < L < n -p. It can be shown similarly as Tufts and Kumaresan 
(1982) that there exists bo,..., bi such that 

bout,,+ hntM + ...+ hfai+L = 0 for     i = l,...,n-L. (12) 

where Y,f=i b\ = 1 and eA\... ,e^h are the p roots, among the L roots, of the following 
polynomial equation; 

bo + b1x + ... + bLx
L = 0 (13) 

Now we can write (12) in the matrix form as; 

Ab = 0 (14) 

Since the rank of the matrix A is p, therefore b is not unique as long as L > p and 
L + 1 < n — L. Observe that (14) is equivalent to 

ATAb = 0 (15) 

Consider the spectral decomposition of ATA as follows; 

L+i 
ATA = £ Ajarf (16) 

i=l 

where Ai > A2 > ... > \L+\ and a;'s are the orthonormal eigenvectors corresponding to 
Aj. Since the rank of ATA is p, this implies Ap+i = ... = XL+I = 0. Therefore any vector 
b, which belongs to the linear space spanned by [ap+i,.. . ,ai+i] will satisfy (16). Let's 
consider the null space of ATA as follows; 

N=[aJ+1:...:a£+1] (17) 

Now since the rank of N is L—p+1, from (8) it follows that there are (L-p+1) independent 
vectors of the following form; 
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Ne 

9i    0 
•      9i 

ftH-l     9p 

0     0 

0     0 

0 
0 

0 
0 
0 

9\ 

9P+I 

(18) 

such that the space spanned by N and Ng are equal. This idea can be used to estimate g 
from j/i's as follows. 

Replace (it's by yt's to form the matrix A, obtain the spectral decomposition of ArA 
as follows; 

L+l 

ArA = £ XAfif; (19) 
t=i 

where Ai > ... > A^ and äi are the orthonormal eigenvectors corresponding to A;. Although 
the rank of ATA is p, but the rank of ÄTÄ is L + 1. Obtain the estimation of the null 
space of N as; 

N=[äP+1:...:ai+1] (20) 

Now we would like to obtain a basis of N of the form (18), which can be used to 
estimate g. Let's write 

"Ni N = 
No 

(21) 

where Niisap + lxL + 1-p matrix and N2isaI-pxL + l-p matrix. Since N2 

is of rank L—p, therefore there exists an unique vector b1 upto a constant multiplication 
such that N2b

x = 0. Therefore if we denote g1 = Nib1, then; 

Nbx = g1 

0 
(22) 

Proceeding in the same manner, we can say that there exists vectors b ,..., b    p+ , 



such that; 

[b1- • bL-p+1]   

rg1 

0 
0    . 

g2 • 

0 
0 

0 0     . . &-p+1 

(23) 

Now any one or all or a subset of gfc, for A; = 1,..., L - p + 1, can be used to estimate 
g. It is important to note that when E(yi) = yi5 for i = 1,..., n, then g* == g, for 
k = 1,..., L - p + 1. Now we choose that particular g* from the L - p + 1, g's so that 
it 'fits' the data best, i.e. for each gfc; 1 < k < L - p + 1, we obtain the estimates of 
(ai5..., ap) and (ft,..., ßp) and then calculate the residual sums of squares. We choose 
that set of a's and fts for which the residual sums of squares is minimum. Although we 
may get some infisible roots with respect to some gfc, but it is observed that not all of 
them will give infisible roots. 

The method can be easily applied to the following model; 

p 

E 
fc=i 

yt = oo + 5^ ake
ßkt + et (24) 

that is when the constant term is also present. We apply the above procedure to the data 
set yt - y, when y = £"=1 ^ if it is known that all the fts are negative. Otherwise we 
apply the above method to the complete model namely 

Mr 

yt = Y,<Xkeßkt+et (25) 
fc=0 

and then put ßo =0. 

Another important aspect is the choice of L. Although in theory L can be any integer 
satisfying p < L < n — p but it is observed that the performance of the modified Prony 
estimator depends on L. It is observed (numerically) that as L increases at the beginning 
the performance of the modifed Prony estimator increases in terms of the mean squared 
errors but after that it starts decreasing. It is observed that for L « | the performance 
is the best, although no theoretical justifications can be provided. It seems more work is 
needed in this direction. 

5. CONFIDENCE INTERVALS: 

In this section we propose three different confidence intervals other than the classical 
one as is available in the literature (Gallant; 1987, page 105). 



One important aspect of this model is its asymptotic properties, namely the consistency 
and the asymptotic normality. If we take a particular case of this model, namely U = i, 
for i = 1,... n and p = 1, c*i = 1, then it follows from Wu (1981) that any estimator of ß 
is inconsistent. Infact to obtain the consistency and the asymptotic normality properties 
we have to make the boundedness assumptions on Vs and we have to rewrite the model 
as that of Kundu (1994b). Under the same set of assumptions as of Kundu (1994b), we 
have the following result. 

If we denote 9 = (ax,..., a„ ßi,..., ßp), and 9 to be the LSE of 9 of the model (1) and 
0o be the true parameter value of 9 in (1), then we can say; 

Theorem 1 The LSE 9 of 9 of the model (1) is strongly consistent and 

V^(9-90)^N(0,(T
2
A-

1
) (26) 

where er2 is the error variance, A = ((ay)), with 

a^-^—fm^h'^^dt (27) 
o — a Ja 

where 

K(9, t) = -^h{9, t),      and     h{9, t) = £ ake^ (28) 

Here a and b are the lower and the upper bound of the sampling times. In our case we 
take a = ti and b = tn. Now we can use (26) to obtain 100(1 - a)% confidence interval 
of 9. Interested readers may refer to Kundu and Mitra (1996) for a detailed proof of the 
above theorem. 

We also propose two Bootstrap confidence intervals. One is the percentile Bootstrap 
and the other one is the Bootstrap-t confidence interval. Percentile Bootstrap confidence 
interval can be described as follows: 

[1] From the sample yt ; t = ta,... ,tn, estimate a's and /3's. 

[2] Estimate et = yt — yt, where 
p 

for t = ti, ...,tn. 

[3] Draw a random sample of size n from {eh,..., itn}, let it be {eBl,. • •, eB„}- 

[4] Obtain the Bootstrap sample &*,..., yt*n;, where 

y*u = Vu + K for     * = 1, • • •, n 



[5] Estimate a's and /3's from yt*'s and denote it by a*'s and ,#*'s. 

[6] Repeat the process (3) to (5) NBOOT times. 

[7] From the NBOOT estimators obtain the lower and the upper bound of the 100(1 - 
a% percentile Bootstrap confidence interval for each a*, and ßk- 

We propose the following algorithm for computing the Bootstrap-t confidence intervals. 

[1] From the sample yt ;t = ti,...,tn, estimate a's and /3's. 

[2] Estimate et = yt — yt, where 

for t = t1,...,tn. 

[3] Draw a random sample of size n from {itl,...,etn}, let it be {eg,,,...,£#„}• 

[5] Estimate a's and /3's from y*t and also estimate a1 as a2
B by mean residual sums of 

squares. 

[6] For each a or ß (say 6), compute 

T = VK0* - 9) 

[7] Repeat the steps (3) to (6) NBOOT times. 

[8] From the NBOOT estimators, obtain the lower and upper bound of 100 (1 - a)% 
Bootstrap-t confidence intevals for each a* and ßk- 

In the next section we have performed some numerical experiments to see how the 
different methods behave for finite sample. 

6. NUMERICAL EXPERIMENTS AND DISCUSSIONS: 

In this section we perform some numerical experiments mainly to see how the Modified 
Prony's estimator behaves compared to the usual Prony estimator as an intial guess for 
different iterative procedures. We compare Osborne's method, which is well known to work 
very good for this problem, with that of the usual Gauss Newton method. We also compare 
different confidence intervals with respect to their coverage probability and average length. 
We consider the following model; 

yt = -Ö.Oe-232* + 3.0e0119t + et;      t=l,...,n (29) 
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et is taken to be i.i.d., normal random variables with mean zero and finite variance. We 
take the values of n as 25, 50, 75 and 100 and the different values of a are .01, .05 and .1. 
For each n and <r, we generate 500 samples and compute the Prony estimators (PE) and 
the modified Prony estimators (MPE). Then using the PE and MPE as the initial guesses 
we estimate a's and /3's using Gauss Newton (GN) and the Osborne's (1975) (OS) method. 
We compute the mean squared errors (MSE) of the different estimators. We also report 
the median number of iteration counts and the maximum number of iteration taken over 
500 replications. We also report the the number of times the PE does not give the feasible 
estimators. 

We also compute the confidence intervals of the different parameters by four different 
methods namely the classical one , the proposed one and the two Bootstrap confidence 
intervals. We compute the average length and the coverage probability. We take the 
nominal level to be 90% in our experiments. We report all the results in Tables: 1-9. In 
Table 1-4, we report the average estimates and the MSE's of the PE, MPE and the LSE. 
In each box, the first row, the second row and the third row indicate the results of the PE, 
MPE and LSE respectively. In each row the first figure represents the average value of 
the corresponding estimator and in the bracket we present the corresponding MSE. Table 
5 represents the comparison of the OS method with that of the GN method when the 
starting value is different. We also present the median number of iteration count and the 
maximum iteration taken for both OS method and GN method, when the initial guess 
is the usual PE and also when the initial guess is the MPE. In each box, the first figure 
represents the median iteration count and in bracket the figure indicates the maximum 
number of iterations required over 500 replications for GN method. Similarly the second 
figure reprents the result for OS method. In Tables 6-9, we present the comparison of 
the performances of the four different confidence intervals. In each table we present the 
average length over 500 replications and in bracket we present the coverage probability. 

From the Tables 1-4, it is observed that as sample size increases or the error variance 
decreases the MSE of all the estimators, namely PE, MPE and LSE, decrease. It is clear 
that MPE behave better than PE and the LSE behave better than MPE in all the cases 
in terms of lower MSE. In our simulations it is observed that although PE does not exist 
in certain cases but MPE always exist. It is observed that PE may not exist if the sample 
size is small and the error variance is large. If the sample size is large or the error variance 
is small PE exist. From Table 5, it is observed that as sample size increases or the error 
variance decreases, the median number of iteration count or the maximum number of 
iteration count decreases in all the cases. It is also observed that the required number of 
iteration is much less if the MPE are used as the initial guess to obtain the LSE and it 
is very prominent if the error variance is high. It is also observed that between the OS 
method and the GN method the OS method takes less number of iterations compared to 
GN method in all the cases considered. It indicates that it is better to use the OS method 
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rather than the GN method in general. Although if we use the MPE as the initial guesses, 
it does not make much differences. 

About the different confidence intervals, it is observed that they behave quite differently 
in terms of the average confidence length and the coverage probability. It is observed that 
as sample size increases or the error variance decreases the average length of the confidence 
intervals decreases in all the four cases. It is also observed that as sample size increases the 
coverage probability becomes closer to the nominal value. Among the different methods it 
is observed that the classical method can not maintain the nominal coverage probability 
in many situations, where as the asymptotic method or the Bootstrap procedure behaves 
better than the classical method in the sense that the coverage probability is higher than 
that of the classical one. Although in certain situations it also can not maintain the 
nominal coverage probability and in certain situations the coverage probabilty is much 
higher than the nominal level. Bootstrap-t method works better in that sense, as all the 
cases considered it is capable of maintaining the nominal level although the average length 
is higher in most of the cases. It is also computer intensive. Comparing all these we 
recommend to use Bootstrap-t and if we want to avoid heavy computation, we may use 
the asymptotic confidence interval. 

7. ESTIMATION OF p: 

In this section we propose different methods to estimate p. We assume that p < M, 
where M is some fixed unknown integer. We propose to use Akaike Information Theoretic 
Criteria (AIC) and Bayes Information Theoretic Criteria in this setup as it was originally 
proposed by Akaike (1971), Schwartz (1978) and Risannen (1978) in the general model 
selection setup. See Kundu and Murali (1996) for the comparison of the different methods. 
Rao (1986) also suggested to use different information theoretic criteria to estimate the 
number of signals in a similar problem in Signal Processing. See for example Kundu (1993) 
and Mitra and Kundu (1996) in this connection. AIC and BIC take the following form in 
this case: 

AIC(k)   =   n hiRl + 2 x number of free parameters (30) 

BIC(k)   =   n \nR2
k + -In n x number of free parameters (31) 

AIC (BIC) chooses that k for which (30) [(31)] is minimum. Here R\ is the residual 
sums of squares when, the model order is k, i.e. 

We can use the Cross Validation technique also to estimate p. We propose the following 
procedure for the Cross Validation. 
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[1] Take p = 1. 

[2] From the data ytl,...,ytn, delete ytk; k = l,...n. 

[3] Estimate e*'s and /?'s from ytl,...,ytk^,ytk+l, ■ ■ • &„ by using the missing value tech- 
nique of Kundu and Kundu (1994). 

[4] Estimate ytk by ytk and obtain the Cross Validatory error 

n 

fc=i 

[5] Repeat (2) to (4) for different values of p = 1,2,..., M, and choose that value of 'p' 
for which the Cross Validatory error is minimum. 

In the next section we use these techniques to determine the order of the model for one 
real life data set. 

8. DATA ANALYSIS: 

In this section we consider one real life data set from Osborne (1972, page 185). The 
data are reporeted in the following form {t,yt): 

(0,.844), (10,.908), (20,.932), (30,.936), (40,.925), (50,.908), (60,.881), (70,.850), (80,.818), 
(90,.784), (100,.751), (110,.718), (120,.685), (130,.658), (140,.628), (150,.603), (160,.580), 
(170,.558), (180,.538), (190,-522), (200,.506), (210,.490), (220,.478), (230,.467), (240,.457), 
(250,.448), (260,-438), (270,.431), (280,.424), (290,.420), (300,.414), (310,.411), (320,.406). 

Observe that in this case n = 33, h = 10.0, a = *i = 0.0 and b = £33 = 320. From 
the plot it is clear that the sum of exponentials can be tried to fit the data. First we use 
different order determination criteria as it is proposed in Section 7. Different information 
theoretic criteria take the following form: 

Model Rl NOP AIC BIC 

aieAt 

a0 + aieÄt 

«0 + ELi <*keßki 

ftp + Eti ^kt 

1.1529 
.05105 
.05089 
.05082 
.553E-4 
.550E-4 
525E-4 

2 
3 
4 
5 
6 
7 
8 

8.6952 
-92.1733 
-90.2769 
-88.3223 
-311.4900 
-309.6699 
-309.0169 

8.1918 
-92.9286 
-91.2839 
-89.5810 

-313.0008 
-311.4320 
-311.0310 
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Therefore it is observed from the above table that AIC and BIC choose the following 
model: 

yt = a0 + ale
ßlt + a2e

ß*t + et (33) 

Observe that Osborne (1975) and Osborne and Smyth (1995) also use the same model to 
fit this data. They did not mention why they have used that model. Osborne used the 
initial estimates as aQ = .5, <*i = 1.5, a2 = -1.0, ß\ = -.01, ß2 = -.02. He did not mention 
how he had obtained those initial estimates. With those initial estimates he obtained the 
following least squares estimates: a0 = -3754, a.\ = 1.9358, a2 = -1.4647, ß\ = -.01287, ß2 

= -.02212 after 27 iterations. We obtain the Modified Prony estimates with L = 11, as 
follows in this case:a0 = .1993, en = 1.3670, a2 = -.7157, ßx = -.0087, ß2 = -.0261. Using 
these values as the initial estimates the usual Gauss Newton algorithm converges after 5 
iterations to the same value as that of Osborne. The Osborne's method takes 4 iterations 
to converge in this case. The original data and the fitted curve are shown in Figure la. The 
observed and the fitted values are shown in Figure lb. We obtain the following residuals: 

-2.499E-03, 4.611E-03, 1.171E-03, -8.564E-04, -2.649E-03, 7.331E-05,-2.650E-04, 

-3.521E-04, 8.159E-04, 7.785E-04, 1.487E-03, 1.209E-03,-5.484E-04, 1.902E-03, 

-6.150E-04,-1.783E-04, 2.069E-04,-4.138E-04,-9.608E-04, 6.685E-04, 5.900E-04, 

-1.073E-03,-1.975E-04, 3.402E-04, 6.586E-04, 8.703E-04,-9.186E-04, -6.096E-04, 

-1.111E-03, 6.592E-04,-2.205E-04, 1.318E-03, 3.384E-04. 

We perform run test (Draper and Smith; 1981, page 159) and Durbin-Watson test 
(Draper and Smith; 1981, page 162) on the residuals. It is observed that z = .3594 and 
d = 2.0437 for run test and Durbin-Watson test respectively. Therefore both the tests 
confirm the independent assumptions of the error random variables. 

9. CONCLUSIONS: 

In this paper we consider the linear compartment model as it is defined in (1). We 
propose MPE to obtain the initial estimators, which is a very important problem. It is 
observed that the proposed initial estimator can be used for any standard algorithm to 
obtain the LSE's. We observe that although PE may not exist in certain situation but 
MPE always exist. We compare the usual GN method with that of the OS method and 
it is observed that the OS method works very well compared to that of GN if the initial 
guess is PE but if we use the MPE as the initial guesses it does not make much difference, 
i.e. we donot need any special purpose algorithm to solve this particular problem. We also 
propose different confidence intervals and it is observed that the Bootstrap-t works the 
best in terms of the required coverage probability. We consider the problem of estimating 
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the number of terms in the linear compartment model. We propose to use AIC or BIC 
to estimate the number of terms. We also provide the scheme to estimate the number of 
terms by the Cross Validation technique. It seems any one of them can be used. Since the 
Cross Validation is more computer intensive AIC or BIC may be preferred. 
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Table 1 
Average Estimates and the Mean Squared Errors of the Different Estimators 

N = 25. 

a <X\ a2 ßi Ä 

.01 
-6.008(.0071) 
-6.005 (.0037) 
-6.000(.0002) 

2.999(.0087) 
2.999(.0064) 
3.000(.0003) 

-.2323(6.96E-5) 
-.2321(5.04E-5) 
-.2320(2.62E-6) 

.0119(2.16E-6) 

.0119(1.53E-6) 

.0119(7.34E-8) 

.05 
-6.172(.2921) 
-6.120(1308) 
-6.005 (.0065) 

3.135(.3520) 
3.044(.1980) 
3.002(.0083) 

-.2354(1.83E-3) 
-.2349(1.34E-3) 
-.2324(6.49E-5) 

.0114(6.22E-5) 

.0117(3.83E-5) 

.0119(1.86E-6) 

.1* 
-6.854(1.321) 
-6.321(.9316) 
-6.020(.0290) 

3.297(2.321) 
3.147(1.231) 
3.012(.0366) 

-.2821(1.23E-2) 
-.2524(5.37E-3) 
-.2329(2.59E-4) 

.0120(6.78E-4) 

.0121(1.40E-4) 

.0118(7.69E-6) 

* The ordinary Prony Estimator did not exist 25 times, so the results of the Prony Esti- 
mators are based on the average of 475 replications. 

Table 2 
Average Estimates and the Mean Squared Errors of the Different Estimators 

N = 50. 

a Oi\ "2 A ß2 

.01 
-6.006(.0070) 
-6.000(.0030) 
-6.000(1.49E-4) 

3.002(.0025) 
2.999(.0006) 
3.000(2.44E-5) 

-.2322(5.08E-5) 
-.2321(2.57E-5) 
-.2320(8.97E-7) 

.0119(2.19E-7) 

.0119(4.79E-8) 

.0119(1.96E-9) 

.05 
-6.118(.2038) 
-6.p34(.0637) 
-6.001(.0038) 

3.069(.0695) 
2.977(.0182) 
3.000(6.07E-4) 

-.2354(1.31E-3) 
-.2383(7.14E-4) 
-.2322(2.26E-5) 

.0117(5.78E-6) 

.0121(1.47E-6) 

.0119(4.91E-8) 

.1* 
-6.304(1.179) 
-6.168(.3166) 
-6.003(.0151) 

3.236(.7069) 
2.970(.0671) 
3.000(.0024) 

-.2365(5.62E-3) 
-.2510(3.05E-3) 
-.2325(9.16E-5) 

.0109(3.34E-5) 

.0122(5.14E-6) 

.0119(1.96E-7) 

* The ordinary Prony Estimator did not exist 11 times, so the results of the Prony Esti- 
mators are based on the average of 489 replications. 
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Table 3 
Average Estimates and the Mean Squared Errors of the Different Estimators 

N = 75 

a <*i «2 A Ä 

.01 
-5.998(7.18E-3) 
-6.003(2.53E-3) 
-6.000(1.49E-4) 

2.998(1.91E-3) 
2.999(2.68E-4) 
3.000(6.47E-6) 

-.2323(4.80E-5) 
-.2324(2.30E-5) 
-.2320(4.91E-7) 

.0119(7.82E-8) 

.0119(1.06E-8) 
.0119(2.38E-10) 

.05 
-6.071 (.2001) 
-6.055(.0571) 
-6.000(.0037) 

3.041(.0532) 
2.991(6.55E-3) 
3.000(1.60E-4) 

-.2356(1.25E-3) 
-.2373(5.53E-4) 
-.2322(1.24E-5) 

,0119(2.10E-6) 
.0119(2.60E-7) 
.0119(5.92E-9) 

.1 
-6.157(1.127) 
-6.244(.2670) 
-6.002(.0151) 

3.125(.3311) 
2.986(.0241) 
3.000(6.34E-4) 

-.2370(5.45E-3) 
-.2521(2.42E-3) 
-.2324(5.03E-5) 

.0117(1.10E-5) 

.0120(9.55E-7) 

.0119(2.35E-8) 

Table 4 
Average Estimates and the Mean Squared Errors of the Different Estimators 

N = 100 

a «i «2 A ß2 

.01 
-5.998(7.07E-3) 
-6.001(2.11E-3) 
-6.000(1.49E-4) 

2.998(1.15E-3) 
3.000(1.40E-4) 
3.000(3.77E-6) 

-.2323(4.63E-5) 
-.2326(2.23E-5) 
-.2320(4.43E-7) 

.0119(2.53E-8) 

.0119(2.94E-9) 
.0119(7.12E-11) 

.05 
-6.059(.1959) 
-6.102(.0411) 
-6.000(.0033) 

3.030(.0305) 
3.004(3.72E-3) 
3.000(9.41E-5) 

-.2360(1.21E-3) 
-.2389(5.48E-4) 
-.2322(1.12E-5) 

.0120(6.61E-7) 

.0118(7.94E-8) 

.0119(1.77E-9) 

.1 
-6.103(1.115) 
-6.349(.2121) 
-6.002(.0152) 

3.074(.2213) 
3.004(.0129) 
3.000(3.75E-4) 

-.2386(5.21E-3) 
-.2577(1.96E-3) 
-.2324(4.53E-5) 

.0119(3.68E-6) 

.0119(2.70E-7) 

.0119(7.08E-9) 
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Table 5 
Comparison of the Osborne's Method and the Gauss Newton Method 

N er PRONY MODIFIED PRONY 

25 
.01 
.05 
.1 

5(8), 5(7) 
7(9), 6(9) 
15(100), 12(88) 

2(3), 2(3) 
3(9), 3(9) 

4(41), 4(36) 

50 
.01 
.05 
.1 

4(8), 4(6) 
6(9), 5(9) 
12(70), 10(70) 

2(2), 2(2) 
3(3), 3(3) 
3(5), 3(4) 

75 
.01 
.05 
.1 

4(6), 4(6) 
4(9), 4(9) 
10(63), 8(63) 

2(2), 2(2) 
2(3), 2(3) 
3(4), 3(4) 

100 
.01 
.05 
.1 

3(3), 3(3) 
4(5), 4(5) 
7(19), 6(15) 

2(2), 2(2) 
2(3), 2(3) 
3(4), 3(4) 

Table 6 
Different Confidence Intervals 

N = 25 

a Methods <*i «2 A fo 

.01 
Asymptotic 
Classical 
Bootstrap 
Bootstrap-t 

.0527(.87) 

.0494(.83) 

.0497(.84) 

.0569(.91) 

.0600(.92) 

.0564(.91) 

.0563(.92) 

.0648(.92) 

.0057(.93) 

.0051(.90) 

.0051(.91) 

.0058(.93) 

.0009(.92) 

.0009(.91) 

.0009(.89) 

.0009(.93) 

.05 
Asymptotic 
Classical 
Bootstrap 
Bootstrap-t 

.2661(.87) 

.2489(.82) 

.2520(.85) 

.2895(.91) 

.3012(.91) 

.2827(.91) 

.2845(.91) 

.3275(.92) 

.0285(.94) 

.0256(.90) 

.0253(.91) 

.0290(.93) 

.0005(.91) 

.0004(.91) 

.0004(.89) 

.0005(.93) 

.1 
Asymptotic 
Classical 
Bootstrap 
Bootstrap-t 

.5476(.89) 

.5106(.83) 

.5462(.85) 

.6290(.90) 

.6133(.92) 

.5754(.91) 

.6234(.92) 

.7124(.92) 

,0571(.93) 
.0512(.90) 
.0527(.93) 
.0604(.92) 

.0092(.91) 

.0086(.91) 

.0091 (.92) 

.0104(.92) 
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Table 7 
Different Confidence Intervals 

N = 50 

a Methods c*i «2 ßi Ä 

.01 
Asymptotic 
Classical 
Bootstrap 
Bootstrap-t 

.0493(.92) 

.0399(.90) 

.0404(.91) 

.0429(.91) 

.0148(.92) 

.0147(.88) 

.0148(.93) 

.0159(.91) 

.0030(.88) 

.0027(.87) 

.0028(.87) 

.0029(.92) 

.0001 (.88) 

.0001(.88) 

.0001 (.87) 

.0001 (.92) 

.05 
Asymptotic 
Classical 
Bootstrap 
Bootstrap-t 

.2419(.92) 

.2001 (.90) 

.2023(.92) 

.2151(.92) 

.0739(.88) 

.0734(.86) 

.0738(.84) 
,0793(.91) 

.0151(.88) 

.0139(.86) 

.0139(.81) 

.0148(.90) 

.0007(.88) 

.0007(.87) 

.0007(.87) 

.0007(.93) 

.1 
Asymptotic 
Classical 
Bootstrap 
Bootstrap-t 

.4846(.91) 

.4007(.89) 

.4052(.91) 

.4316(.91) 

.1480(.87) 

.1469(.86) 

.1480(.87) 

.1590(.92) 

.0302(.89) 

.0278(.88) 

.0278(.87) 

.0298(.93) 

.0013(.89) 

.0013(.87) 

.0013(.87) 

.0014(.91) 

Table 8 
Different Confidence Intervals 

N = 75 

a Methods «i «2 ßi ß2 

.01 
Asymptotic 
Classical 
Bootstrap 
Bootstrap-t 

.0489(.92) 

.0404(.93) 

.0406(.95) 

.0422 (.91) 

.0081(.88) 

.0082(.88) 

.0081 (.88) 

.0085(.91) 

.0025(.91) 

.0023(.93) 

.0024(.93) 

.0025(.92) 

4.94E-5(.88) 
4.95E-5(.88) 
4.91E-5(.88) 
5.11E-5(.91) 

.05 
Asymptotic 
Classical 
Bootstrap 
Bootstrap-t 

.2447(.92) 

.2021(.92) 

.2030(.92) 

.2114(.92) 

.0408(.89) 

.0411(.88) 

.0405(.88) 

.0424(.89) 

.0127(.91) 

.0118(.93) 

.0118(.93) 

.0123(.93) 

.0002(.89) 

.0002(.85) 

.0002(.88) 

.0003(.91) 

.1 
Asymptotic 
Classical 
Bootstrap 
Bootstrap-t 

.4900(.91) 

.4047(.92) 

.4069(.95) 

.4234(.92) 

.0816(.88) 

.0822(.88) 

.0813(.88) 

.0849(.92) 

.0255 (.92) 

.0236(.93) 

.0237(.93) 

.0248(.93) 

.0005(.88) 

.0005(.88) 

.0005(.88) 

.0005(.91) 



Table 9 
Different Confidence Intervals 

N = 100 

21 

a Methods «i «2 Ä Ä 

.01 
Asymptotic 
Classical 
Bootstrap 
Bootstrap-t 

.0491(.92) 

.0406(.92) 

.0411(.91) 

.0422(.91) 

.0056(.88) 

.0057(.86) 

.0057(.87) 

.0058(.91) 

.0024(.92) 

.0022(.89) 

.0022(.89) 

.0023(.90) 

2.51E-5(.88) 
2.52E-5(.87) 
2.49E-5(.87) 
2.58E-5(.90) 

.05 
Asymptotic 
Classical 
Bootstrap 
Bootstrap-t 

.2459(.92) 

.2034(.92) 

.2057(.91) 

.2111(.91) 

.0281(.88) 

.0284(.84) 

.0283(.86) 

.0292(.91) 

.0119(.93) 

.0109(.89) 

.0109(.88) 

.0114(.90) 

.0001(.88) 

.0001(.87) 

.0001(.87) 

.0001 (.90) 

.1 
Asymptotic 
Classical 
Bootstrap 
Bootstrap-t 

.4925(.92) 

.4072(.92) 

.4113(.91) 

.4225(.91) 

.0562(.89) 

.0569(.88) 

.0565(.88) 

.0583(.90) 

.0239(.92) 

.0220(.89) 

.0219(.89) 

.0227(.91) 

.0003(.89) 

.0003(.88) 

.0002(.85) 

.0003(.90) 


